Airflow Dynamics of Coughing in Healthy Human Volunteers by Shadowgraph Imaging: An Aid to Aerosol Infection Control

نویسندگان

  • Julian W. Tang
  • Andre Nicolle
  • Jovan Pantelic
  • Gerald C. Koh
  • Liang De Wang
  • Muhammad Amin
  • Christian A. Klettner
  • David K. W. Cheong
  • Chandra Sekhar
  • Kwok Wai Tham
چکیده

Cough airflow dynamics have been previously studied using a variety of experimental methods. In this study, real-time, non-invasive shadowgraph imaging was applied to obtain additional analyses of cough airflows produced by healthy volunteers. Twenty healthy volunteers (10 women, mean age 32.2±12.9 years; 10 men, mean age 25.3±2.5 years) were asked to cough freely, then into their sleeves (as per current US CDC recommendations) in this study to analyze cough airflow dynamics. For the 10 females (cases 1-10), their maximum detectable cough propagation distances ranged from 0.16-0.55 m, with maximum derived velocities of 2.2-5.0 m/s, and their maximum detectable 2-D projected areas ranged from 0.010-0.11 m(2), with maximum derived expansion rates of 0.15-0.55 m(2)/s. For the 10 males (cases 11-20), their maximum detectable cough propagation distances ranged from 0.31-0.64 m, with maximum derived velocities of 3.2-14 m/s, and their maximum detectable 2-D projected areas ranged from 0.04-0.14 m(2), with maximum derived expansion rates of 0.25-1.4 m(2)/s. These peak velocities were measured when the visibility of the exhaled airflows was optimal and compare favorably with those reported previously using other methods, and may be seen as a validation of these previous approaches in a more natural setting. However, the propagation distances can only represent a lower limit due to the inability of the shadowgraph method to visualize these cough airflows once their temperature cools to that of the ambient air, which is an important limitation of this methodology. The qualitative high-speed video footage of these volunteers coughing into their sleeves demonstrates that although this method rarely completely blocks the cough airflow, it decelerates, splits and redirects the airflow, eventually reducing its propagation. The effectiveness of this intervention depends on optimum positioning of the arm over the nose and mouth during coughing, though unsightly stains on sleeves may make it unacceptable to some.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Qualitative Real-Time Schlieren and Shadowgraph Imaging of Human Exhaled Airflows: An Aid to Aerosol Infection Control

Using a newly constructed airflow imaging system, airflow patterns were visualized that were associated with common, everyday respiratory activities (e.g. breathing, talking, laughing, whistling). The effectiveness of various interventions (e.g. putting hands and tissues across the mouth and nose) to reduce the potential transmission of airborne infection, whilst coughing and sneezing, were als...

متن کامل

Airflow Dynamics of Human Jets: Sneezing and Breathing - Potential Sources of Infectious Aerosols

Natural human exhalation flows such as coughing, sneezing and breathing can be considered as 'jet-like' airflows in the sense that they are produced from a single source in a single exhalation effort, with a relatively symmetrical, conical geometry. Although coughing and sneezing have garnered much attention as potential, explosive sources of infectious aerosols, these are relatively rare event...

متن کامل

Absence of Detectable Influenza RNA Transmitted via Aerosol during Various Human Respiratory Activities – Experiments from Singapore and Hong Kong

Two independent studies by two separate research teams (from Hong Kong and Singapore) failed to detect any influenza RNA landing on, or inhaled by, a life-like, human manikin target, after exposure to naturally influenza-infected volunteers. For the Hong Kong experiments, 9 influenza-infected volunteers were recruited to breathe, talk/count and cough, from 0.1 m and 0.5 m distance, onto a mouth...

متن کامل

A schlieren optical study of the human cough with and without wearing masks for aerosol infection control.

Various infectious agents are known to be transmitted naturally via respiratory aerosols produced by infected patients. Such aerosols may be produced during normal activities by breathing, talking, coughing and sneezing. The schlieren optical method, previously applied mostly in engineering and physics, can be effectively used here to visualize airflows around human subjects in such indoor situ...

متن کامل

Airflow inside tunnel boring machine: A numerical study and an experimental verification

Knowledge of the airflow distribution inside a Tunnel Boring Machine (TBM) can create a safe working environment for workers and machinery. The airflow quality and the related mass flow rate in the ventilation system should be sufficient to dilute gases and remove dust inside the tunnel. In this work, airflow distribution in the single shield TBM tunnel was studied using computational fluid dyn...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2012